Wind speed forecasting using neural networks
نویسندگان
چکیده
منابع مشابه
Forecasting of Wind Speed Using Artificial Neural Networks
Wind speed forecast is essential in wind energy conversion system and may fail to operate power plant at non optimal region if not properly forecasted. This paper focuses the short term wind speed forecasting using conventional statistical method and artificial neural networks such as back propagation network (BPN), generalized regression neural network (GRNN) and radial basis function networks...
متن کاملForecasting of Wind Speed Using Feature Selection and Neural Networks
Wind energy is rapidly increasing and it is becoming a significant contributor to the electricity grid. Wind speed is an important factor in wind power production and integration. This paper presents a wind speed forecasting using feature selection method and bagging neural network. Feature selection plays an essential role in the machine learning environment and especially in the prediction ta...
متن کاملFeedforward Neural Networks for Very Short Term Wind Speed Forecasting
Since 2007 wind has become the major source of renewable energy in the UK. Moreover, increasing oil costs are driving researchers in the marine transport field to develop innovating wind ships. In order for wind power to be effectively and efficiently exploited, reliable forecasts on wind speed are needed. These will allow saving curtailments costs, improving safety, reducing damages due to ext...
متن کاملWind Speed Prediction Using Artificial Neural Networks
A multilayered artificial neural network has been used for predicting the mean monthly wind speed in regions of Cyprus where data are not available. Data for the period 1986-1996 have been used to train a neural network, whereas data for the year 1997 were used for validation. Both learning and prediction were performed with adequate accuracy. Two network architectures of the similar type have ...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wind Engineering
سال: 2019
ISSN: 0309-524X,2048-402X
DOI: 10.1177/0309524x19849846